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Once the symmetry operations and the general positions of the C and I groups of class mmm are given 
in the form of ordered standard blocks, their principal subgroups can be presented in such a way that 
their general point positions are easily recognized. New full standard symbols are proposed. 

Scope and outline 

We are here concerned with centred groups C and I of 
class mmm. It often happens in phase transitions in 
which the symmetry is lowered that only one symmetry 
element is lost, either the inversion (C and I subgroups) 
or the centring (P subgroups). One is interested not 
only in recognizing all possible maximal subgroups, 
but also in knowing the general positions of a chosen 
subgroup. 

Thus our main problem is not the mere derivation of 
subgroups, a question which has been solved by several 
authors (see for instance NeubiJser & Wondratschek, 
1966), but a subgroup tabulation presented in such a 
way that from the knowledge of the general positions of 
the group the general positions of a chosen subgroup 
can be recognized at once. 

To make the point clear, we start with the result 
obtained for space group C m c m - D ~  7. We reproduce 
in Table 1 the general positions of Cmcm in some con- 
venient order. Table 1 is a 4 x 4 block of the coordinate 
triplets which are in a one-to-one correspondence with 
the symmetry operations listed in the 4 x 4 block of 
Table 2. 

One recognizes of course the planes m,c ,m  of the 
Hermann-Mauguin symbol, but also other planes 
b,n,n [already listed in the symbols of International 
Tables for  X-ray Crystallography (1952)] and binary 
axes which will be considered later. The point on which 
we particularly insist is the one-to-one correspondence 
of the coordinate triplets in Table 1 and the symmetry 
operations of Table 2. Thus if the subgroup tabulation 
is able to show all the symmetry operations of a specific 
subgroup the above one-to-one correspondence en- 
ables one to read at once the coordinate triplets of the 

general positions of the specific subgroup. This is 
exactly the purpose of Table 3. 

Table 2. Block o f  symmetry operations 

m D 17 C m c - -  2n 

x y z 
e 2 2 2t 
i m ¢ m 
t 21 2t 2 (° 
ti b n n 

The subgroup Table 3 has two parts; the upper one 
contains the P subgroups, the lower one the C (and A) 
subgroups. 

P subgroups. Here the division into columns and lines 
is essential. The first line contains the P subgroups of 
class 222. The second line contains those P subgroups 
of class mmm which have the symmetry centre (i~) at 
000, i.e. the image of xyz  is g)72. 

The third line contains those P subgroups of class 
mmm which have the symmetry centre (/2) at ~40, i.e. 
the image of xyz  is ½ - x , ½ - y , i .  

We now consider the columns. In each column the 
two P groups listed of class m m m  have in common the 
P subgroup of class 222 in the first line. By now, we 
know all the symmetry elements of a maximal P sub- 
group of class mmm and thus we can read from Table 1 
the corresponding coordinate triplets. 

Example 1: Subgroup Pbnm; centre il at 000. The 
eight symmetry elements are: the identity (e), the two- 
fold axes 21,21,21, the inversion /1 and the planes 
b, n, m. For the sake of clarity we reproduce in Table 4 

Table 1. Block o f  coordinate triplets C m c m - D ~  7 

x, y, z 
.~, ~, ~. 

½+x, ½+y, z 
½-x,  ½-y,~. 

x, y, z .~, y, ½- z 
2, y, z x, fi, ½ + z 

½+x, ½-y, e ½-x,  ½+y, ½ - z  
½-x,  ½+y,z ½+x, ½-y,  ½+z 

~, y, ½+z 
x, y, ½ - z  

½-x,  ½-y,  ½+z 
½+x, ½+y, ½ - z  
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Subgroups 

P2221 - D~ 
Pmcm-- D~ 

* P b n n  - -  D6h 

C222t - D~ 

Table 3. Subgroups vj~e ~-" bnng'*mcm = Cmcm - D~ 7 

- - D  3 P2a22~o(0kk)-- 3 P2~ZlZ~(kOO)- D 4 P22~Z~°(k00)_ , -:- D2 
Pbnm _-- D TM2, P m n n  --:--- D 122n Pbcn - Dt2~ 
P m c n  --  D~ 6 P b c m  - DI~ P m n m  - D ~  

cmc21 2cm - ~  ~.21 - C 2 1 . . ( z  ~ -  x )  
C m c 2 1 -  C ~  A r e a 2 -  C ~  

* The centre of inversion is at ¼k0 for this line. 

C'~22~(x ~ y --+ z --+ x)  
A m m 2  - Cl~( kO0) 

Table 2 with the corresponding symmetry elements as- 
terisked. We read at once from Table 1 the corres- 
ponding coordinate triplets of the subgroup Pbnm, 
given in the same order as the symmetry elements 
above: 

xyz; ½+x,½-y,~.; ½ - x , ½ + Y , ½ - z ;  2,p,½+z; 
YcfS; ½-x ,½+ y,z; ~t2 +x,-~-y,~ ½+z; x,y,½ - z .  

Table 4. Symmetry elements and subgroups 

The symmet ry  elements of  P b n m  are asterisked. The coordi-  
na te  triplets are read from Table 1 in corresponding positions. 

e ° 2 2 2~ 
i* m c m* 
t 2~ 2; 2(~ ') 
ti b* n* n 

Example 2: Subgroup Pbcm; centre /2 at kk0. The 
eight symmetry elements are" the identity, the twofold 
axes 2,2~,2~ t), the inversion iz and the planes b,c,m. 

We read, by the same method, from Table 1 the 
corresponding coordinate triplets 

x,y,z; x,p,5; ½ - x , ½ + Y , ½ - z ;  ½ - x , ½ - Y , ½ + z ;  
½ - x , ½ - y , 5 ;  1 1 -~--x,~+y,z; x,P,½+z; x , y , ½ - z .  

Remark. In International Tables (I.T.) the centre 
of symmetry is chosen at 000. For shifting the origin 
from ¼k4~0 to 000, apply the following rule: leave + x  
and + y  coordinates as they stand and make the substi- 
tutions 

-x.~-- ½ - x ;  -y~.~-- ½ - y  , 

in order to obtain the coordinate triplets of Pbcm; 
centre at 000: 

xyz; x ,½-y ,5 ;  2 ,½+Y,½-z;  .~,.9,½+z; 
xyz" x,½+ y,z; 1 ~ . , x , -~-y , -z+z,  x , y , ½ - z .  

Other symbols. -D~h means 'same setting as in I.T.' 
while -Dz~h means 'equivalent to Dgh, but with another 
setting'. The parentheses in the first line after the space 
group symbol of the P subgroups of class 222 indicate 
the shift of origin with respect to the standard notation 
in I.T. 

C subgroups. Here the first C subgroup is the (only) 
one of class 222, followed by those of class mm2. Note 
that in I.T. the twofold axis of centred groups of class 

mm2 is always taken along the z direction. Thus C 
groups of settings 2mm or ram2 are written as A groups 
in I.T. 

The prescription for finding coordinates is particular- 
ly simple. The identity and (any) three symbols after C 
produce already four coordinate triplets; the four 
others are obtained by adding the translation ~20 of C. 

Example 3" c, m2m Four symmetry elements are "~,b21n. 
identity e, m, 2, m. From Table 1 one has: 

x,y,z;  2,y,z;  2,y,½--z; x,y,½--z 

plus four triplets formed by adding ½½0. 
If one wants to get the A setting of I.T. one has first 

to perform the permutation x -+ y ~ z -+ x indicated 
in Table 3, with the result: 

(000; 021½)+xyz; xpz; ½-x ,p , z ;  ½--x ,y , z .  

This is, say, the positions of I.T., but with a shift ¼00 
of the origin, also indicated in Table 3 in parentheses 
after the space-group symbol Amm2. 

Other ordering schemes. Of course it is natural to 
think of other ordering schemes. For instance let us 
number from 1 to 16 the coordinate triplets of Table 1. 
The subgroup Pbnm is entirely specified by the num- 
bers 1,-4, 5, 8, 10, 11, 14, 15. 

Another ordering scheme is obtained by a matrix 
notation a~j for the symmetry elements and b~j for the 
corresponding coordinate triplets (i for lines, j for 
columns in Tables 1 and 2). Thus Pbnm is entirely 
specified by the following indices ij: 1 l, 32, 33, 14; 21, 
42, 43, 24. 

However none of these schemes has the power of the 
synthetic Table 3 which shows how the subgroups are 
correlated. For instance one has from Table 3 at once 

P2221 x T1 = Pmcm 
P2221 × T2 = Pbnn. 

Here T1 is the group formed by the identity and the 
inversion centre il at 000, 12 is the group formed by 
the identity and the inversion centre iz at ¼kO. 

Having described the use and hopefully the useful- 
ness of the subgroup Table 3, we devote the main part 
of the paper (§§ 1 and 2) to the derivation of such sub- 
group tables. Some other results are noteworthy. 

We shall see (§ 2.4) that C and I groups of class mmm 
naturally fall into two categories: (a) those in which 
simple (non-helical) binary axes 2~ and 2y intersect, 
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the maximal subgroups of class 222 being respectively 
C222 and I222, (b) those in which simple binary axes 
2~ and 2y do not intersect, the maximal subgroups of 
class 222 being respectively C2221 and I2,2121. 

In the course of this paper we have developed a very 
simple block-algebra which is able to indicate the results 
of the multiplication of any symmetry elements of the 
present space groups without referring to an explicit 
representation (~1~) of the space-group elements in- 
volved (§ 2.5). 

Finally we come up (§ 3) with the proposal of using 
'standardized' full symbols for the C and I groups of 
class mmm,  i.e. symbols which at a glance show the 
eight maximal P subgroups of class m m m  with their 
position of inversion centres. 

For the reader already aware of group theory, the 
following considerations summarize in an abstract way 
the subgroup part of the paper but may be omitted in 
a first reading. 

C o n s i d e r a t i o n s  o f  group theory  

Let f# be a space group of lattice C or I of class mmm.  
L e t ~  be a subgroup of class 222 or ram2 and of lattice 
P. The coset expansion of f# can be written: 

f~ = ~  + i ~  + t ~  + ti#f ~ . 

Each term of the second member corresponds to a 
line of the block (cf. § 2.2). d ( f + i ~  is a centrosym- 
metric subgroup of ~ of class m m m  and lattice P. One 
can write: 

f~ = (act a + iae{) + t ( J f  + i J r ) .  

~ '  + t i ~  is also a centrosymmetric subgroup of cg of 
class m m m  and lattice P (ti is a centre of inversion). 
One can ~vrite: 

f# = (j~,o + t i ~ ) +  t(af" + t i ~ )  

with t z -  e. ~ ' +  ta¢ ° is a (non-centrosymmetric) sub- 
group of ~, belonging to the class 222 or m m 2  and to a 
multiple lattice C or L One may write: 

f ~ = ( J f  + t J f )  + i ( J f  + ta/d) 

with i t - t i  (modulo a non-fractional lattice transla- 
tion). 

Our study corresponds to finding: all subgroups of 
class m m m  and lattice P of the forms J f  + i J r  and ~ + 
tia~; all subgroups of class 222 and ram2 with a 
multiple cell C or I of the form aef + ta(Y; all subgroups 
of class 222 and ram2 with a primitive lattice P, say oa(('. 
All these subgroups are invariant. 

B l o c k  a lgebra  

In order to make the concepts clear we start with block 
algebra (symmetry elements, choice of generators, 
subgroups and relations with general positions) in 
simple P lattices before considering C and I lattices of 
class mmm.  (cf. Bertaut & Wondratschek, 1971). 

I.  P r i m i t i v e  l a t t i ce s  

The block of symmetry operations has the following 
form 

x y z 
e 2 2 2 
--i m-- m-- m . (1-1a) 

Here e means the identity operation, 2 is a twofold 
axis, i is the inversion centre, m = i .  2 a plane of sym- 
metry. Although we use here point-group notations, 
it is understood that 2 means the symbol of a space- 
group element, translations being included, as for in- 
stance in (2xlVx). In the same spirit m is written for the 
corresponding symmetry plane which may be a mirror 
or a glide plane. We illustrate by the space group 
Pbnm (D~ 6) the possible structure of the block of sym- 
metry operations (1-2) and the corresponding triplets 
of point coordinates, already given under Example 1. 

Here 

e 21x 21y 21~ 
"7" 
t b n m .  ( 1 - 2 )  

21,,= (2~1~-2t0) is a screw axis 21 at x¼0 
21y = (2y1½-~2½) - - 21 at ayal 1 

2,z = (2=[00½) . . . .  2~ a t00z  
i = (]1000) is a symmetry centre at the origin. 

1.1 Structure o f  the block 

The symmetry operations in the block are not inde- 
pendent and generators are underlined. For instance, in 
the first line of block (1-1a) the operation 2 under z 
is the product 2.2 of the operations under x and y. The 
second line of the block is obtained by multiplying 
each term of the first line by i. An important property 
of the block is that any one of the four terms in a line 
is the product of the three other terms. 

Example  4: According to the multiplication rule 

(~1~) (/~l~e) = (~Pl~e + ~)  
one has 

(2~1~0) (2y1½-~2~)=(2x. 2 y l ~ + ~ 0 ) = ( X z l  
- - (2z100½) 

o r  

2,x • 21y = 21= • 

The sign - means 'equivalent modulo a lattice transla- 
tion'. One easily checks that n = ( m y l ~ )  is equal to 
i .  21r(-21y • i) etc. Here my is the mirror perpendicular 
to Oy at xOz ,  represented by the matrix (100) 

my= 0 - 0 = i . 2 y  
0 0 1 

The reader may check that n -  ibm, i - b n m  etc. 
Some subgroup relations are immediately evident 

from block (1-1a). Lines 1 + 2  contain the symmetry 
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operations of the P groups of class mmm-D2, , .  Line 
1 corresponds to the P groups of class 222-D2. The 
columns 1 + 2, 1 + 3, 1 + 4 correspond to P groups of 
class 2 /m-Cz~ .  Also P2  is contained in the first line 
and PT in the first column. 

1.1.1 Choice o f  generators. However the choice of 
the generators is somewhat arbitrary. For simplicity 
we keep constant the first column containing the 
generators e and i. We can still freely choose any two 
other generators provided they are in different columns. 
We restrict our choice to the two columns under x and 
y (a term in the last column is the product of the three 
other terms in the same line) so that we have 2 × 2 = 4 
possible structures of the block (1-1a, b, c, d) 

e 2 m m 
t m 2 2 (1-1b) 

e m 2 m 
- 7  - -  - -  

t 2 m 2 (1-1e) 

e m m 2 

t 2 2 m . (1-1d)  

Thus we obtain in the first lines of these blocks three 
subgroups of the class m m 2 - C 2 ~  and three subgroups 
of class m - C ~  (equivalencies included). 

Example 5: In Pbnm there are three non-centro- 
symmetric orthorhombic subgroups P 2 ~ n m - P m n 2 i  
- CZTv, P b 2 i m -  Pmc21 - C~v and Pbn21 - Pna21-  C~, 
and the three monoclinic subgroups P m - C ~ ,  Pb-C~ 
and P n -  Pb - C]. 

It is an easy matter to construct the general positions 
of the desired subgroup once the correspondence be- 
tween the symmetry elements and the point triplets is 
established. 

Example 6" Pbn21" one has from block (1-2) and 
Example 1 

xyz;  ½ - x , ½ + y , z ;  ½+x,  i 2 - y , ~ + z ;  2 , f , ½ + z .  

Remark.  One recognizes that all the subgroups found 
in this way can be obtained at a glance from the full 
symbol of I.T. which is given in our example as P21/b 
21In 21/m by taking various combinations of opera- 
tions present in the symbol and corresponding to the 
classes mmm, 222, mm2, 2/m, 2 and m. 

The reason why we have spent so much time on the 
block structure is to prepare for the treatment of the 
case of multiple cells where the space-group symbol 
does not give immediate information on all possible 
subgroups. 

L For simplicity we write t2= (e[t). With each element 
(~.[z,) we can form an associated symmetry element 

tz(o~lz~) = (c~lz, + t) . (2-1) 

Thus for t = 11 ~-~0 screw axes along x and y are always 
coexistent with ordinary binary axes, the nature of the 
axis along Oz being unchanged. For t =~-~  there will 
be screw axes and ordinary binary axes in the three 
directions x ,y , z .  Likewise glide planes are associated 
with mirrors or glide planes of a different nature; for 
instance a glide plane a perpendicular to Oz changes to 
b in the multiplication by tz. 

If i, = ('1-[000) is the inversion operation at the origin, 
i2=(tz ,  i= (T]t) is the symbol of the inversion centre at 
½t, say at ~40 in a C lattice, at z 1 4¼7 in an I lattice. 

2.2 Block structure 

In space groups of class m m m  and lattices C o r / ,  
we can now construct a block of symmetry operations 
in a form similar to the block (1-1a). Generators are 
underlined. 

x y z 
e 2 2 2 

l m m m 

t2 t2 t2 
t i  tm tm tm . (2-2) 

The third and fourth lines result from multiplying 
the first line by the operations, translation t and inver- 
sion ti. 

The block contains the symmetry operations of: 
a P group of class 222 (line 1), 
a P group of class mmm (lines 1 + 2) as already dis- 

cussed, 
a C or I group of class 222 (lines 1 + 3), 
a P group of class m m m  (lines 1 + 4) with the origin 

displaced to the inversion centre at ½t. 
The property that each term is equal (modulo a 

non-fractional lattice translation) to the product of the 
three other terms on the same line is conserved. Thus 
the last column is a consequence of the three other 
ones. Keeping always constant the first  column which 
contains the generators e, i and t, we can confine our 
choice of the two other generators to any couple of 
terms in the second (x) and third (y) column. Thus we 
can write 4 x 4 =  16 different 'first lines' (2-3). 

Once the first line is f ixed, the structure o f  the whole 
block is fixed. Consequently we can construct 16 dif- 
ferent blocks of symmetry operations for a given I or C 
group. We shall not write down all of them, because 
all the relevant properties can be read from a standard 
form of one block which we shall specify later. 

2. Multiple lattices C and I 

2.1 Associated symmetry elements 

'In C and I lattices we have two translational gener- 
ators tl=(e[O00) and t2=(e[~-~0) for C, t2=(e]lz-~z ) for 

x y z x y z 

e 2 2 2 e t2 2 t2 
e 2 m m e t2 m tm 
e 2 t2 t2 e t2 t2 2 
e 2 tm tm e t2 tm m 



384 P R I N C I P A L  S U B G R O U P S  AND G E N E R A L  P O S I T I O N S  IN C AND I G R O U P S  

e m 2 m e tm 2 tm 
e m m 2 e tm m t2 
e m t2 tm e tm t2 m 
e m tm t2 e tm tm 2. (2-3) 

2.3 Enumeration o f  subgroups 

We enumerate here the subgroups contained in the 
blocks (including equivalencies) and corresponding to 
classes mmm,  mm2  and 222. From (2-3) one has: 

Line 1" four P groups of class 222: 

P222; P 2 , t 2 , t 2 ;  P t2 ,2 , t2 ;  P t2 , t2 ,2 ;  

twelve groups of class mm2 say, four groups P, setting 
mm2 : 

Pmm2;  Ptm,  m, t2; Pm,  tin, t2; Ptm,  tm, 2; 

four groups P, setting 2mm" 

P2mm;  Pt2, m, tm; Pt2, tm, m; P2 ,  tm, tm; 

four groups P, setting m2m: 

Pm2m;  Ptm,  t2, m; Pm,  t2, tm; Ptm,  2, t m .  

Lines 1 +2" four P groups of class m m m ;  inversion 
centre il at 000" 

P m m m ;  Pm,  tin, tm; Ptm,  m, tm; Ptm,  tm, m .  

Lines 1 + 3 : one C group of class 222" 

C222 = C2, t2, t2 = Ct2, 2, t2 = Ct2, t2, 2 = Ct~ t~ ~ ; 

one C group of class mm2" 

Cmm2 = Ctm, m, t2 = Cm, tm, t2 = Ctm, tin, 2 = Ct,~ t,,, " t22", 

one C group of class 2mm" 

C2mm = Ct2, m, tm = Ct2, tm, m = C2, tm, tm = Ctz2 ~m ~ t,,m ", 

one C group of class m2m: 

Cm2m = Cm, t2, tm = Ctm, t2, m = Ctm, 2, tm = Ct,," tzz t,, " • 

The two last group are written in I.T. as A groups, the 
twofold axis being chosen along Oz. 

Remark .  There is only one maximal C group of 
each class because for (c¢1~,) contained in the C group 
the associated element t(~lv,) is contained too as shown 
in the 'full' symbol. 

Lines 1 + 4 :  four P groups of class m m m ;  inversion 
centre/':2 at ½t= ~ 0 :  

Ptm,  tm, tm; Pro, m, tm; Pro, tm, m; Ptm,  m, m .  

The same enumeration is true for the subgroups of I 
groups of class mmm,  replacing C by I and ½t by k ~ .  

Remark .  Each P subgroup of class m m m  and each 
C (or I) subgroup occurs four times in the 16 blocks. 

Important  remark.  For a given P group we shall 
define as 'associated group' the group which has the 
associated symmetry symbols. Thus, Ptm,  tm, m (in- 

version centre at 000) and Pm, m, tm (inversion centre 
at ½t) are associated groups. 

Associated P groups of class m m m  have the im- 
portant property of having the same subgroup of class 
222. Indeed 

(tm, tm, m) × i = t2, t2, 2 
and also 

(m, m, tm) × ti = t2, t2, 2 

according to the rule 

tm × il - mtil  = m × i2 • 

Examples of associated groups are found in the 
columns of Table 3. 

Conversely the same P subgroup of class 222, multi- 
plied by the groups T1 and 12 (see under Scope and 
outline) gives rise to two associated P groups of class 
mmm.  It is for this reason that in the title of this paper 
we use the word 'principal' subgroups (and not just 
'maximal') to mean a wider range of subgroups. Thus 
the indication of the P subgroups of class 222 in Table 
3 is an immediate aid for getting the general positions 
of the 'maximal'  P subgroups of class mmm.  

2.4 Choice o f  the standard block 

We propose to choose always ordinary twofold axes 
along Ox and Oy as generators in the first line of the 
standard block. There are two cases to be considered. 

Case (a). The twofold axes of the generators 2x and 
2y intersect. Consequently the twofold axis 2z along Oz 
as well as t2z, noted 2~ t) is an ordinary twofold axis. 
The P subgroups of class 222 are: 

P 222 - D~; P 212~2- D~; 

P2212 ") and P2122 ") - P2221 - Dz 2 . 

The C subgroups of class 222 (lines 1 + 3) are all 
equivalent to C 2 2 2 - D  6. 

The I subgroups of class 222 are all equivalent to 
1222 - D82. 

Case (b). The twofold axes of the generators 2x and 
2y do not intersect. The twofold axis along Oz is always 
a screw axis 2jz, as well as t21z, noted ~"~ , a . j .  z • 

The P subgroups of class 222 are 

P 2221 - D 2; P 212121 - D 4; 
P22121 t) and P2~22~ ° - P21212- Dz a . 

The C subgroups of class 222 are all equivalent to 
C2221 - Dz s. 

The I subgroups of class 222 are all equivalent to 
I212121 - D 9. 

Example  7: Cmem - D~! 7, 
We take the following generators: 

e; 2x=(2x[000); 2y=(2y]00½); i=(T[000); t=(elza-~20). 

The twofold axes do not intersect [case (b)]. One 
constructs easily the other symmetry elements (2-4) by 
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using the multiplication rule given under § 1.1, the 
block itself (Table 2) and the corresponding point 
positions (Table 1). 

2 , =  (2,100½) corresponds to 21 at 00z 
m~=(m~1000) - - m at Oyz 
my= (myl00½) - - c at xOz 
m,=(m~100½) - - m at xy¼ 
t2~=(2~12x½0) - - 21 at x¼0 
t2y=(2yl 2~2) - - 21 at ¼Y¼ 
t2z=(2d2-t~2 ~) - - 21 at ~ z  

tm~=(m~l~20) - - b at ¼yz 
tmy=(my[½~2~) - - n at x¼z 
tm~=(m~[ ~2½~2) - - n at xy¼ . (2-4) 

2.5 Further propert ies o f  the block structure 

Each term a~j of line i and column j is equal to the 
product of the term of the first line and same co lumnj  
by the term of the first column and same line i 

a~j=a~l, alj . (2-5) 

This relation is illustrated by the following scheme 
of indices 

(e) 
11 l j  

For instance, m--a22, i =  a~2 and 2 = a21 are uniquely 
correlated by 

m = i . 2 .  

Example  9: In the C m c m  block of Table 2 one has 

ny.  nz = 2y. 21z = 2x • 

More generally, once the block of symmetry elements 
is written down, any product of operations may be 
reduced by (2-5) without need of the explicit expres- 
sions of the operators (~tlr,). 
Examples: 

mx . 21~ = i2~ . t21z = it2y = ny 
21:, • n~ = t2x . ti21~ = i2y = c 
21x • cy . nz = e ,  21x • ny . mz = e e t c . .  

3. Search of subgroups 

In the example of Cmcm,  the twofold axes 2x and 2y 
do not intersect. Consequently the subgroups of class 
222 are those of case (b) under § 2.4 (cf. Table 3). 

Maximal P and C subgroups are easily derived from 
§ 2.3. We propose however another alternative which 
is the use of an ordered full symbol. 

3.1. The use o f  a f u l l  s tandard symbol  in C and I groups 

We propose to use with the standard block conven- 
tion (simple twofold axes along O x  and Oy as genera- 
tors in the first line of the block of operators) the re- 
suiting full symbol indicating the symmetry planes and 
associated planes, with the following order: the first 
two upper indices are those planes which are the 
products of simple twofold axes 2x and 2y with the 
inversion /1 at the origin 000. For instance the full 
standard symbol for C m c m -  D~ 7 is "~b,nr~m~m, for C m c a -  
DiS i'~mna 2h it is "~O~b (see Table 5). 

Of course, m being a simple mirror and 2 a simple 
binary axis, the twofold axis 2 intersects the plane m 
at the centre i. Also 

tm = t i .  2 ( -  i .  t2) 

uniquely correlates the elements tm, ti and 2 (or tin, i 
and t2). 

In view of the binary nature of the operation one has 
also 

a~l = a~j. axj for each j .  

More generally 

a U • a k j  = a~l. a l j  • akl • a l j  = a l l  • akl • 

Thus the product of two terms in the same column is 
equal to the product of terms in the first column and 
on the same lines. 

E x a m p l e  8: One wants to know what inversion 
centre (il or/2) correlates the plane c with the axis 21y 
in the block of Cmcm.  One has 

21y • c = t i=  i2. 

Likewise, the product of two terms in the same line 
is equal to the product of terms in the first line and on 
the same columns. 

Table 5. Full  s tandard and L T. symbols  f o r  C and I 
groups o f  class m m m  

To category a belong those groups which admit P222 as sub- 
group (or C222 in the C groups, 1222 in the I groups listed 
here).To category b belong those groups which admit P212~2~ 
as subgroup (or C2221 in the C groups, I21212~ in the I groups 
listed here). 

Full standard 
I.T. symbol Category 

Cmcm D 17 - zh C ' ~  b 
Cmca-  D is tuna 2~ Cgcb b 
C m m m  D 19 m m m  2h Cgan a 
C c c m - -  D[  ° C',%'~ b 

r a a a  C m m a - -  D ~  Cbmb a 
C c c a -  D ~  t"cn ~ ¢ n a  a 

I m m m - -  D~,  I~ mmm a 
I b a m  - D~ 6 Ib~'~ a 
I b c a -  Di~ If,~g b 
I m m a -  D~,  I ,~g b 

From the knowledge of the full symbol it is easy to 
write down at a glance all the maximal P subgroups 
with the position of their inversion centre. In the 
present case P subgroups of class m m m  with the inver- 
sion centre at 000 are those in which an odd number 
(three or one) of the upper indices of the full symbol 
is conserved. In Table 3 they are in the second line. 
In the example of Cmca they would be: Pmna,  Pbca, 
Pmcb,  Pbnb. 

A C 32A - 3 
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P groups of class m m m  with the origin at 4-~0 are the 
complementary ones, formed with the associated 
planes. In the example of C m c m  they are found in the 
third line of Table 3. In the example of C m c a  they 
would be: Pbcb,  P m n b ,  Pbna,  P m c a .  

We have listed in Table 5 the 'full standard symbol' 
and the symbol used in the I.T. for C and I groups of 
class m m m .  It is easy to guess that the redactors of 
I.T. (1935) in their choice of a minimum number of 
symbols have avoided the symbol n, giving their pre- 
ference to symbols in the following order m, a, b and c 
(with one exception l b c a - D  27 which could have been 
consequently labelled Ibaa).  

3.1.1• S y m m e t r y  o f  the f u l l  symbol .  If in the full symbol 
we permute two planes of the lower indices with two 
planes of the upper indices, we do not change the 
foregoing subgroup scheme of P groups of class m m m ,  
with respect to the origins. For instance (cf. Table 2) 

CnCCm ~ ('Tnnm .__ C c n n  ~, (~ncn ._=. C c e m  2 0 .  
nn ~ c c n  - -  ~ n c m  ~ c n m  • - -  D 2 h ,  

Imna - -  l n m a  .__ l m m b  ...z_ l n n b  ~. I m m a -  D~ 8 
n m b  ":- a m n b  ":- ~ n n a  - : -  - m m a  

The inversion of one upper (or all upper) with one 
lower (or all lower) indices is equivalent to a change of 
origin in the scheme of maximal P subgroups. 

Thus (].ncm 20 ~cnn-O2tt will still represent the group 
C c c m - D 2 2  °, but the subgroups P n c m ,  Pnnn  will now 
have the origin at 000 while in the full standard symbol 
their origin was at ~ 0 .  

3.1.2. R e m a r k .  In I.T. one finds under 'symbols for 
various settings', symbols generally equivalent to the 
above permuted symbols, sometimes with and some- 
times without inversion of upper and lower indices. 
In fact the upper indices are those of the I.T. standard 
label, the lower indices the associated planes. If one 
may still predict possible P subgroups of class m m m  
from these I.T. symbols, one does not recognize their 

respective origins nor the positions of the planes with 
respect to the binary axes. 

3.2. C Subgroups  

The maximal C subgroups of the classes m m 2 ,  m 2 m  
and 2 m m  are also gained from the knowledge of the 
full symbol. One has only to replace a couple of as- 
sociated planes by two associated twofold axes. 

E x a m p l e :  CL",~" gives rise to (see Table 3) 

r-,mc2~ ~ 2 c m  a6 . r-,m2m a4 
• C2o ,  C2o ~ bn2~O- C2v - _ ' "-'2inn "-'b21n ' 

the last two groups being found in I.T. as A groups. 
Note that in the upper indices the twofold axis is the 

product of the two accompanying planes; m .  c = 2 ~  
etc. 

3.2.1. P subgroups o f  class m m 2 .  They are not listed in 
Table 3; they are easily obtained from the full symbol 
(see above) of maximal C subgroups of class ram2, 
each full symbol giving rise to four such P subgroups. 
In the example of C m c m  the 12 subgroups are: 

P m e 2 1 -  CZ2o; Pmn2(s  r) - C~o; 

Pbc2~ ° - Pca2z - C ~ ;  Pbn2~ - Pna2x - C9~. 

P 2 c m  - P m a 2  - C~o; P2xcn  - P n a 2 ~ -  C9~; 

P2d~m - Pmn21 - C7o; P 2 n n  - Pnn2  - CSz °. 

P m 2 m  - P m m 2 -  C~o; Pm2~n - Pmn21 - CZTo; 

P b 2 ~ m -  Pmc2~ - C~o; Pb2n  - P n c 2 -  C6~ . 

Note that the three operators following P in the 
group symbol are not independent. For instance, in 
Pmn2(t t) one has m n  = 2(1 r) or m2(1 t) = n which one easily 
finds from the block algebra. 

As an exercise the reader may derive these groups 
also from the full symbol of the P groups of class m m m  

Coordinates 
x, y, z; 
~, 37, e; 

½+ x, ½+ y, ½+ z; 
½ - x ,  ½ - y ,  ½ - z ;  

Subgroups 
P 222(00¼) -- Di 

Pccm - D3,h 
* Pban - D~h 

I222(00k)- D2 s 

Table 6. B l o c k  o f  s y m m e t r y  operat ions  

Generators: e, t, i and (2x100~); (2,100½). 
l b a m -  D2~ 
x y z 

e 2 2 2 
i c c m 
t 21 21 21 
ti b a n 

x, Y, t - z ;  ~, y, t - z ;  
$, y, t + z ;  x, 37, ½+z; 

½+x, t - y ,  e; ½-x, t+y ,  ~; 
½ - x ,  ½+y, z; t + x ,  ½ - y ,  z; 

,% y, z; 
x, y, zT; 

½--x, ½--Y, t + z ;  
½+x, ½ + y , k - z  

P2~2~2 - DS~ P 2212~(¼0¼) P 2~22~(0~L~) 
P b a m -  D91, • 14 Pcan _ D2h Pbcn -- D~, 
P c c n -  D t° Pbcm - D ~  Pcam--  Di~, 21t 

I cc2 1 2 ~ . ( z  ~-  x)  c2m Ib21.(X ---~ y - +  Z - +  X) ha21 
I b a 2 -  C2to I m a 2 -  C2~(¼00) I m a 2 -  C2Zo(¼00) 

• The centre of inversion is at ¼~1: for this line. 
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(see § 1) and show that one finds 24 subgroups, each one 
occuring twice. 

Remark on tabulation 
Table 6 shows what the tabulation of the symmetry 

block, general positions and subgroups look like for 
Iccm=Ibam-D26. The author has tabulated in a ban 

similar way all the C groups (D~ 7 to D~h 2) and I groups 
F~28"~ * (D~ to ,--~hJ. 

* These tables are available as photocopies which may be 
purchased from the author or obtained from the deposit with 
the British Library Lending Division (Supplementary Publica- 
tion No. SUP 31500:14 pp., 1 microfiche) through The Exe- 
cutive Secretary, International Union of Crystallography, 13 
White Friars, Chester CH1 1NZ, England. 

In the tables deposited under the IUCr auxiliary 
publication scheme, the reader will also find the cor- 
responding tables for the two F groups F m m m - D l a  n 
and F d d d - D ~  with self-explanatory notations. 
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Determination by X-ray Diffraction of Interstitial Concentrations of Vanadium Ions in 
Disordered VOx 
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Integrated intensities were measured from VOx single crystals with x=0.80, 0"94, 1.01, 1.11 and 1"25. 
A least-squares refinement was carried out for the scale factor and the isotropic temperature factors 
of vanadium and oxygen ions for each composition, for a range of interstitial vanadium contents. 
The R values after the refinement were 0.04-0.05. There are vanadium ions at tetrahedral interstitial 
sites, the concentration of which changes from 0-0.5% to 3% with composition x; this confirms 
quantitatively previous studies which employed dynamical electron diffraction effects. The temperature 
factors of vanadium (By) and oxygen (Bo) increase with x; By= 1.02-1.38 A2 and Bo=0.58-1"24 A 2. 
The composition dependence of the overall temperature factor is similar to that of the lattice parameter. 
The 002 structure factor for electrons U002 and the critical voltage Ec at which the second-order Kikuchi 
line disappears were calculated for VO0.s2 and VOw.20, using the individual temperature factors deter- 
mined by this study. The 002 structure factors measured by the critical-voltage and the intersecting- 
Kikuchi-line method [Watanabe, Andersson, Gjonnes & Terasaki (1974). Acta Cryst. A30, 772-776] 
were in agreement within less than 2 %. The results support the idea that the ionic state of the cation 
lies between neutral and singly ionized. 

Introduction 

Vanadium monoxide is stable over a wide range of 
compositions at high temperature from VO0.s to VO1.3 
(Sch6nberg, 1954; Andersson, 1954; Westman & 
Nordmark, 1960; Stenstr6m & Westman, 1968). Its 
structure is that of NaC1 with a large number of 
vacancies on both vanadium and oxygen sublattices. 
The concentration of vanadium and oxygen vacancies 
changes with composition (Banus & Reed, 1970; 
Banus, Reed & Strauss, 1972). Even at stoichiometry 
about 15% of both sublattices are vacant. The 
existence of interstitial (tetrahedral) vanadium ions for 
oxygen-rich compositions has been reported (Hoier & 
Andersson, 1974). Thus the defect structure is quite 

complicated. The observed diffuse scattering exhibits 
a composition dependence (Andersson & Gjonnes, 
1970; Andersson & Tafto, 1970; Bell & Lewis, 1971; 
Hayakawa, Morinaga & Cohen, 1973; Andersson, 
Gjonnes & Tafto, 1974) which appears to be related to 
the Fermi surface of VOx (Hayakawa et al., 1973). At 
high temperatures it has been suggested that in VO1.23 
there are vacancy clusters each involving one interstitial 
vanadium surrounded by four vanadium vacancies 
(Andersson et al., 1974). Quantitative comparisons of 
scattering of such defects to measured data have not yet 
been made. It is interesting to note that this proposed de- 
fect structure is quite similar to that for wfistite, FexO 
(Koch & Cohen, 1969; Cheetham, Fender & Taylor, 
1971). An ordered structure n e a r  VO1.2_ l .  3 has been 
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